

2004

YEAR 11

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK # 1

Mathematics Extension 1

General Instructions

- Working time 90 minutes.
- Reading Time 5 minutes.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work

Total Marks -80

- Attempt all questions.
- All questions are **NOT** of equal value.

Examiner: C. Kourtesis

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

Question 1(15 marks)Marks

(a) Simplify
$$\frac{1}{5!} + \frac{1}{6!}$$
 1

(c) Write down the general solution of $\cos \theta = \frac{1}{2}$

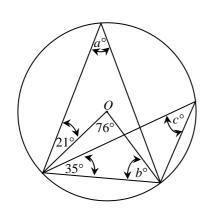
- (d) If α , β and γ are the roots of the cubic equation $2x^3 + 12x^2 - 6x + 1 = 0$ find the value of:
 - (i) $\alpha + \beta + \gamma$
 - (ii) $\alpha\beta\gamma$
 - (iii) $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$
- (e) The equation of a parabola is

$$y = x^2 - 6x + 7$$

Find the

- (i) focal length
- (ii) coordinates of the vertex

(f)



Find the values of *a*, *b* and *c*. [There is no need to give reasons]

O is the centre of the circle

3

2

2

4

3

Question 2 [14 marks]

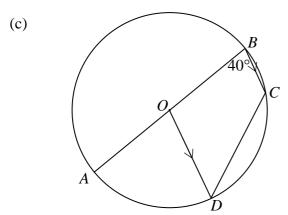
(a) The polynomial $P(x) = x^3 - 6x^2 + \theta x - 4$ has x = 1 as a zero.

Find the:

- (i) value of θ
- (ii) other zeros of P(x)
- (iii) values of x for which P(x) < 0
- (b) The parametric coordinates of *P*, a point on a curve are given by $P(8t, 2t^2)$ where *t* is the parameter

Find:

- (i) the Cartesian equation of the curve
- (ii) the gradient of the tangent to the curve at the point where t = 3



AB is the diameter of a circle centre *O*. *BC* and *OD* are parallel and ∠*OBC* = 40°. Find the size of ∠*OCD* giving reasons

(d) Prove by Mathematical Induction that

 $1+3+5+7+\ldots+(2n-1)=n^2$

for positive integers n

Marks

5

3

3

4

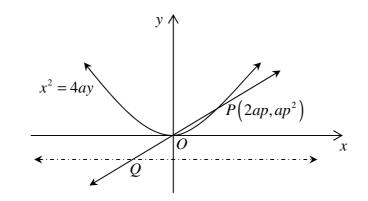
Question 3		[18 marks]	Marks	
(a)	<i>T</i> is the point $(1, -2)$ and the tangents from <i>T</i> to the parabola $x^2 = 12y$ touch the parabola at <i>A</i> and <i>B</i> . Write down the equation of the line <i>AB</i>		2	
(b)	In how many ways can 5 different books be placed in a row so that two specified books:		4	
	(i)	occupy the end positions		
	(ii)	must always be together?		
(c)	(i)	Write down the expansion of $sin(x-\theta)$	6	
	(ii)	If sin $r - \cos r = A \sin(r - \theta)$ where $A > 0$ and		

(ii) If
$$\sin x - \cos x = A \sin(x - \theta)$$
 where $A > 0$ and $0 < \theta < \frac{\pi}{2}$, show that $A = \sqrt{2}$ and $\theta = \frac{\pi}{4}$

(iii) Hence or otherwise solve the equation for **all** values of *x*.

 $\sin x - \cos x = 1$

- (iv) Find the maximum value of $\sin x \cos x$
- (d)



The diagram shows the parabola $x^2 = 4ay$. *PO* is produced to meet the directrix at *Q*.

6

- (i) Show that the equation of the tangent at *P* has equation $y - px + ap^2 = 0$
- (ii) Find the coordinates of the point Q.
- (iii) Prove that *QS* is parallel to the tangent at *P*. [*S* is the focus]

Quest	tion 4 [18 marks]	
(a)	17 people sit at a round table. In how many ways can they be seated if:	4
	(i) there are no restrictions	
	(ii) two particular people cannot sit together	
(b)	If $t = \tan \frac{\theta}{2}$ express in terms of t	3
	$\cos\theta + \sin^2\left(\frac{\theta}{2}\right)$	
(c)	When a polynomial $P(x)$ is divided by $x^2 - 3x + 2$ the remainder is $4x - 7$. Find the remainder when $P(x)$ is divided by $(x-1)$.	2
(d)	A polynomial $P(x)$ has the following properties:	4
	(i) $P(x)$ is odd and has a factor of $(x-5)^2$.	
	(ii) The curve of $y = P(x)$ passes through (1,1152).	
	Find the polynomial, $P(x)$ of least degree that satisfies the above, expressing your answer in factorized form.	

(e) $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ are points on the parabola $x^2 = 4ay$ with 5 parameters *p* and *q* respectively.

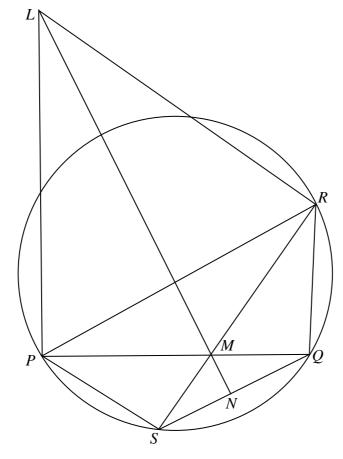
- (i) Find the coordinates of *M* the midpoint of *PQ*.
- (ii) If PQ subtends a right angle at the vertex show that pq+4=0.
- (iii) Find the locus of *M*.

Quest	ion 5	[15 marks]	Marks
(a)	How many arr	rangements are there of the letters in the word	2
		ANDAMOOKA	
(b)		rs of the word PROBLEMS how many different words consisting e possible if they include P, do not begin with P and the letter M is 1?	3
(c)	Prove by Math	hematical Induction that	4

$$\sin(n\pi + \theta) = (-1)^n \sin \theta$$
 for $0 < \theta < \frac{\pi}{2}$ for positive integers *n*

(d) PQ and RS are two chords of a circle which intersect at M inside the circle. MN is the perpendicular from M to SQ. L is the point on NM produced such that LP is perpendicular to PQ

6



- (i) Copy the diagram
- (ii) Show that $\Delta PML \parallel \Delta NMQ$
- (iii) Hence show that $LR \perp RS$

End of paper

2004

YEAR 11

HIGHER SCHOOL CERTIFICATE ASSESSMENT TASK # 1

Mathematics Extension 1

Sample Solutions

Question	Marker
1	Mr Kidd
2	Mr Choy
3	Mr Parker
4	Mr Dunne
5	Mr Bigelow

 $\frac{180-76}{2}$ 52° = 38° .

$$\begin{array}{ll} (A) \\ P(x) &= x^{2} - 6x^{2} + \Theta x - 4 \\ P(x) &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 6 + \Theta - 4 &= 0 \\ (I - 7 + 2 + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - 5x^{2} + 9x - 4 \\ - (-x^{3} - x^{2}) \\ - (-x^{3} - x^{2$$

(a) Chord of contact
$$xx_0 = 2a(y+y_0)$$

 $x^2 = 12y \Rightarrow a = 3$
 $T\left(\underbrace{1}_{x_0}, \underbrace{-2}_{y_0}\right)$
 $\therefore x \times 1 = 2 \times 3(y-2) \Rightarrow x = 6(y-2)$
 $\therefore x - 6y + 12 = 0$

(b) (i)

Place the two books at either end, so there are 3! ways of arranging the books in between. The end books can then be switched. Total = $3! \times 2 = 12$

Place the two books together, so there are 4 objects to arrange in 4! Ways. Then the books can be switched. Total = $4! \times 2 = 48$

(c) (i)
$$\sin(x-\theta) = \sin x \cos \theta - \cos x \sin \theta$$

(ii)
$$\sin x - \cos x = A \sin (x - \theta)$$

 $= (A \cos \theta) \sin x - (A \sin \theta) \cos x$
 $\therefore A \cos \theta = 1, A \sin \theta = 1$
 $\therefore A = \sqrt{1^2 + 1^2} = \sqrt{2}$ ($\because A > 0$)
 $\tan \theta = 1 \Rightarrow \theta = \frac{\pi}{4}$ ($\because 0 < \theta < \frac{\pi}{2}$)
(iii) $\sin x - \cos x = 1 \Rightarrow \sqrt{2} \sin \left(x - \frac{\pi}{4}\right) = 1$
 $\therefore \sin \left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$ $\sin \theta = c \Rightarrow \theta = n\pi + (-1)^n \sin^{-1} c$
 $\therefore x - \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{4}$

$$\therefore x = n\pi + (-1)^n \frac{\pi}{4} + \frac{\pi}{4} = n\pi + \frac{\pi}{4} \left(1 + (-1)^n\right)$$

$$x = \begin{cases} n\pi & n \text{ odd} \\ n\pi + \frac{\pi}{2} & n \text{ even} \end{cases}$$

Alternatively:

$$\sin\left(x - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4} - x\right) = \cos\left(x - \frac{3\pi}{4}\right)$$
$$\therefore x - \frac{3\pi}{4} = 2n\pi \pm \frac{\pi}{4}$$
$$\cos\theta = c \Longrightarrow \theta = 2n\pi \pm \cos^{-1}c$$
$$x = 2n\pi + \pi, 2n\pi + \frac{\pi}{2}$$
$$\therefore x = (2n+1)\pi, 2n\pi + \frac{\pi}{2}$$

(iv)
$$\max(\sin x - \cos x) = \max\left(\sqrt{2}\sin\left(x - \frac{\pi}{4}\right)\right) = \sqrt{2}$$

(d) (i)
$$y = \frac{x^2}{4a}$$

 $\frac{dy}{dx} = \frac{x}{2a}$
 $m_p = \frac{dy}{dx|_{x=2ap}} = \frac{2ap}{2a} = p$
 $\therefore y - ap^2 = p(x-2ap)$
 $\therefore y = px - 2ap^2 + ap^2 = px - ap^2$
Alternatively:
 $x = 2at, y = at^2$
 $\frac{dx}{dt} = 2a, \frac{dy}{dt} = 2at$
 $\therefore \frac{dy}{dt} = \frac{2at}{2a} = t$
 $\therefore m_p = \frac{dy}{dx|_{t=p}} = p$

(ii) The directrix is
$$y = -a$$

$$m_{OP} = \frac{ap^2 - 0}{2ap - 0} = \frac{p}{2}$$

$$\therefore y - ap^2 = \frac{p}{2}(x - 2ap) = \left(\frac{p}{2}\right)x - ap^2$$

$$\therefore y = \left(\frac{p}{2}\right)x$$

$$Q: \text{ sub } y = -a \Rightarrow x = -\frac{2a}{p}$$

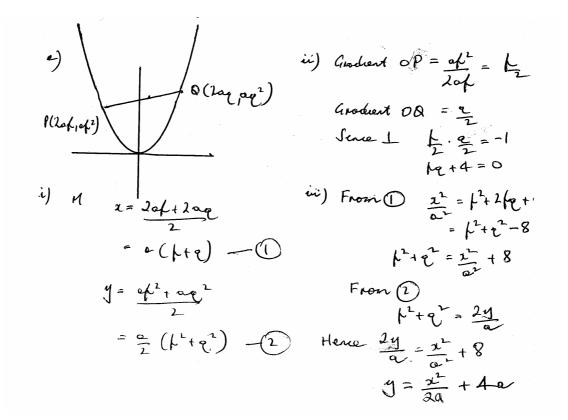
$$Q\left(-\frac{2a}{p}, -a\right)$$

(iii) Focus is
$$(0,a)$$

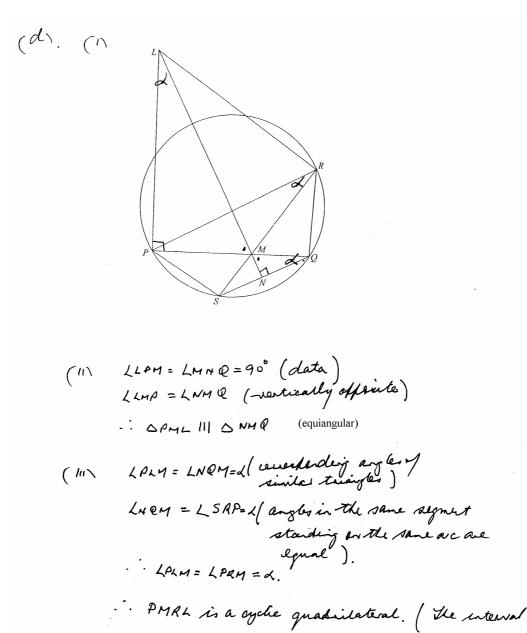
$$m_{QS} = \frac{a - (-a)}{0 - \left(-\frac{2a}{p}\right)} = \frac{2a}{2a/p} = 2a \times \frac{p}{2a} = p$$

 $\therefore QS \parallel$ tangent at *P*.

(1)
(a) 16! Ilandard Bookwork.
(a) 16! Ilandard Bookwork.
(a) 16 2 puple HOST le neoled legather
londer skienes joined
$$A = B$$
 or $B = A$
This can be done as $2 \times 15!$, may a
Hence 2 puple not legetler $16! - 2 \times 15!$
 $= 15! (16-2)$
 $= 14 \times 15!$
(b) $1+t^{1}$
 $2t$ $\cos 0 = 1-t^{1}$
 $1+t^{2}$
 t $\tan 0 = t$ Hence $\sin 0 = \frac{t}{2} = \frac{t}{\sqrt{1+t^{2}}}$
 $\sin 0 + \sin^{2} 0 = \frac{1-t^{2}}{1+t^{2}} + \frac{t^{2}}{1+t^{2}} = \frac{1}{1+t^{2}}$
(c) $0 + \sin^{2} 0 = \frac{1-t^{2}}{1+t^{2}} + \frac{t^{2}}{1+t^{2}} = \frac{1}{1+t^{2}}$
(c) $0 + \sin^{2} 0 = \frac{1-t^{2}}{1+t^{2}} + \frac{t^{2}}{1+t^{2}} = \frac{1}{1+t^{2}}$
(c) $16! = 0 + 4-7$
 $= -3$
(c) H P(2) is odd den auwe fores changh origin
 $a \times a = factor$
 $14 (a-5)^{2} to a factor the (2+5)^{2} must also be
 $a \text{ factor } P(s)=P(s)=0$
Hence $P(s) = k \times (2-5)^{2}(2+5)^{2}$
 $14 P(0) = 1152$
 $152 = k \times 16 \times 36$
 $h = 2$
Hitter $P(x) = 22 (x-5)^{2} (x+5)^{2}$$



QUESTIONS. (a). $\frac{9!}{2!} = |30240.|$ (b) Place First letter is 6 ways. Then place P, is 4 ways. then place the other three letters ie. 5x4x3 ways. 6× 4× 5×4×3 = [1440.] (c) when n=1. LHS = sin (T+0) = - sin 0 RHS = (-1)'an 0 = - in 0. . Inversen n=1. when n=k. $\sin(k\pi+0)=(-1)^{4}\sin 0$. assuming above to be true, show that. it is also time when n = k+ 1. $ie \operatorname{vir}\left((k+i)\pi+\Theta\right) = (-i) \operatorname{vir} \Theta .$ 19₽ LHJ = in ((E+1)T+0) = m ((&TT+0)+TT) = - in (kT+0) (using the identity sin(A+T) = - in A) =-1x(-1) = 0 = (-1) = 0 = RHS. Having assumed time for n= & we proved time fromsker. now since it is time for n=1 it is time for n=2 etc and hence take for all positive integers.



.: LR _LRS.

PM insteads equal angles at the faits 4 and R)

. . [LRS = 90° (oppente angles of a cyclic quadulation are sufflementary)